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Abstract—In this project we take on the task of musical timbre
transfer, where the goal is to manipulate the timbre of a sound
sample from one instrument to match another instrument while
preserving other musical content, such as pitch, rhythm, and
loudness. Existing approaches involve image based style transfer
on unpaired audio samples, or Spectrogram representations. We
propose using a feed-forward variant of the WaveNet deep neural
network [1] to work entirely in the audio domain, which avoids
addition of unwanted elements in the final audio waveform that
are associated with reconstruction of audio from an image. As
we borrow a model typically used for real time audio processing,
rather than focusing on unpaired audio samples we work on
pairs of digitally generated instrument wave forms to investigate
effectiveness of a shallow net. Our results show some promise
but are limited by model depth and artifacts that keep it from
being usable in the industry.

Index Terms—Timbre Transfer, Wavenet, Real-time signal
processing, Generative Synthesis

I. INTRODUCTION

Timbre is the perceptual quality of sound that is used to
differentiate between different musical instruments that might
otherwise be playing at the same fundamental frequency, note
duration and loudness. Modelling timbre is a multidimensional
challenge with inherently subjective ideals, but there has been
considerable research into synthesis of such sounds. Even
with state of the art techniques for modelling timbre, when
it comes to acoustic or analog instruments there has been
resistance over decades to replace live instruments. This is due
to limitations in accurately simulating all parameters involved
with an acoustic instrument. Consequences of this limitation
are that sampling audio remains the only practical alternative
for most studios in place of depending on Live musicians.

Live musicians and samples come with a large overhead
in resources, including equipment to record at scale, budget
and time taken to painstakingly compile sample libraries. Even
with the best quality samples it takes expert manipulation to
extract subtle dynamics in the audio corresponding to musical
features like - muting, pitch bends, vibrato etc. This motivates
our interest in the field of neural network based timbre transfer.

Timbre transfer is the concept that one can take the audio
from one instrument and output the audio of another instru-
ment while preserving musical content like pitch, rhythm and
loudness. The concept of neural network timbre transfer hence
holds significance in the musical industry as it allows a single

musician to track audio on an instrument that they possess
proficiency in, enabling them to now single handedly produce
music that otherwise required experts and large production
budgets. Additionally it allows electronic music producers to
experiment with sounds that may not otherwise exist in the
real world.

Research in this field has so far been limited to converting
Audio into spectrograms or other image based representations,
and borrowing from extensive research into style transfer for
images as is seen in Timbretron [2] that uses CycleGAN [3]
for unpaired instrument to instrument timbre transfer. More
recent research into ”Attention-based timbre transfer” [4] that
utilises a Mel-GAN [5] which maps audio to mel-frequency
spectrograms in real time along with WaveNet that can be
used to extract high quality real time mappings between
two instruments. We propose analysing the capabilities of
WaveNet [1] on timbre transfer without invoking an image
representation. Our model is inspired by a feed-forward variant
of WaveNet as proposed by [6], which attempted to create a
real time transformation between a clean guitar signal and a
distorted signal, treating it as a black box modelling problem.

We use the same black box modelling approach as taken by
[6] to map two instruments together given paired training data.
Our work differs from other research as it stays entirely in the
audio domain. Conversion to Image based representations fails
to utilise underlying properties directly from the time series
data, and conversion between images and audio in high quality
becomes a bottleneck. Our model does not suffer from these
issues. We chose to use a lightweight model to meet latency
requirements that are crucial in the music industry.

Metrics to evaluate such a task are harder to define, a large
part of our analysis shall be subjective using vocabulary in
terms of usefulness in the music Industry. In order to train the
model we use error to signal ratio as will be elaborated upon
later. As this process is limited in computational capabilities
due to real time behaviour, one of our goals is to identify by-
product mappings that may not be perfect representations of
the target instrument, but lie in between the source and target
timbre. If such by products (due to incomplete training or lack
of depth of model) are pleasing to the ear they hold promise
for creation of new instruments and timbres that do not exist
in the real world.
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II. RELATED WORK

The field of timbre transfer has seen a lot of prominence
and active research 2018 on wards. The most cited of which is
”TimbreTron: A WaveNet(CycleGAN(CQT(Audio))) Pipeline
for Musical Timbre Transfer” [2]. As the hefty title suggests
this paper works with a Constant Q Transform (CQT) repre-
sentation of an input audio sample, which is their choice of
image representation for Audio. It operates on unpaired CQT
representations by style transfer as implemented in CycleGAN.
In order to observe high quality audio outputs it uses WaveNet
at the final stage to reconstruct audio. The limitation of this
model is that it requires the entire audio sample to be converted
to an image for it to apply style transfer. This means that
it cannot be implemented in real time, but shows promising
results otherwise.

A more recent paper tackling timbre transfer is ”Attention-
based Timbre Transfer” [4] which uses Mel-GAN [5] for
spectrogram inversion, which they claim provides a fast and
parallel alternative to other auto-regressive (i.e. time series
prediction approaches that use history) music generation ap-
proaches. At its essence they add attention to the image to
image translation required for style transfer by modelling it
as an unsupervised image translation problem as motivated by
[7]. MelGAN comprises of generative adversarial networks to
produce high quality audio wave-forms given a Mel-frequency
spectrogram, this transformation allows for performance 100x
faster than real time on a 1080 GPU, enabling real time timbre
transfer. Though this paper is real time it still works in the
image domain, and is trained only on monophonic sounds.
The Mel scale is a perceptual scale of pitch distances which
they claim is better for timbre analysis.

There does exist more research into timbre based synthe-
sis, that offer high quality audio like Google’s Nsynth [8],
WaveNet AutoEncoders [9] and research at our own institute
by Krishna S. et al [10] who built a Variational Parametric
Model for Audio Synthesis among many other papers. Some
methods assume that the user provides musical inputs encoded
in MIDI information to generate tones. Certainly one approach
to timbre transfer is to extract MIDI information from audio
generated on one instrument and which can be used to play a
virtual instrument with timbres generated (using any orthog-
onal method). We were more interested in approaches that
perform no explicit abstraction or recovery underlying musical
note information and could solve the problem of transferring
timbre in a single neural net. This brings more restrictions on
the generality of the model as we neeeded paired samples but
seemed worth exploring.

Vocal Style transfer is another application akin to tim-
bre transfer, that has benefited majorly from Spectrogram +
CycleGAN inspired approaches. A recent paper [11] utilises
TravelGAN which introduces a siamese network in addition to
the Generator and Discriminator, thus avoiding the emphasis
on pixel wise losses seen with CycleGAN. Other popular
approaches require parallel speech data (akin to our paired
instrument data) with RNNs [12], or with CNNs [13]

Our intention is to realise a real time timbre transform that
avoids conversion to the image domain. Within the limitations
of a course project we decided not to attempt an unpaired
timbre transfer problem, and instead investigate the capabilities
of a WaveNet like model for specific instruments to analyse
the potential applications, as there are an endless set of
instruments and dynamic details for which transfer could be
investigated.

Our inspiration for this task comes from the paper ”Deep
Learning for Tube Amplifier Emulation” [6] which has had
high impact on the industry of Signal Processing for Guitars,
enabling musicians to produce high quality guitar tones from
home without access to expensive tube based amplifiers. Their
feed-forward variant of WaveNet was able to learn the non-
linear distortions produced by a guitar amplifier that was
largely indistinguishable to the tones generated by real ampli-
fiers to a MUSHRA test. This Neural network based approach
quickly unseated modelling based approaches to simulate an
Amplifier, and has since become the industry standard even
for musicians with access to expensive recording gear. Their
work also sees large application in live as the network can run
in real time, saving musicians the burden of carrying heavy
amplifiers and speaker cabinets.

Our hope was to utilise their model on the domain of timbre
transfer, which was largely unexplored. Although many other
papers do utilise WaveNet increasingly for creation of high
quality audio, most of them transfer to the image domain, so
we hoped to explore whether a direct WaveNet model could
do the task, and analyse its strengths and weaknesses.

III. DATASETS

Our requirements for this task were audio files generated
from performances on different instruments that played the
exact same notes with matching intensities at the same time.

Rather than depending on finding a high quality recorded
audio dataset for this investigative project, we generated all
the audio files used in this project using VST (Virtual Studio
Technology) plugins in the industry standard DAW (Digital
Audio Workstation) Ableton Live. This allows us to generate
samples of audio that correlate with each other exactly in
terms of pitch and loudness, only differing in timbre as long as
they are generated using the same underlying MIDI (Musical
Instrument Digital Interface) information, which is an industry
standard to notate musical information in terms of pitch,
loudness note duration etc.

In order to generate audio files we used the MIDI-BACH
dataset [14] which is a catalog of 18th Century Classical
composer J.S Bach’s compositions using different instruments.
The recommended size of training data set in [6] was 5 minutes
of audio so we began with that constraint on the size of training
data.

Given a multitude of choices for which instruments to pair
and train for this project we decided to use acoustic in-
struments that exhibited similar ADSR curves (Attack-Delay-
Sustain-Release) without echo and reverb. For us this classi-
fication broadly differentiates between wind/brass instruments



that may sustain indefinitely to percussion driven instruments
that provide impulses to a string or resonant metal tube. This
choice was made as the model [15] we were using had been
reported to perform poorly at modelling reverb and delay
effects due to the small size of the neural network used. To
normalise further we set the attack on these instruments to
be the same, and equalised gain in post, finally converting all
instrument files to mono, 32bit Floating point at 44.1 kHz. The
songs used were - Bach Cello Suite (Prelude + Allemande) for
monophonic audio and Fugue 3,4 and Prelude 4 for polyphonic
audio. The generated audio files were further split into 60%
training, 20% validation and 20% test.

Each piece belongs to only one key signature (which implies
that each piece majorly only uses a subset of 7 notes from the
total available 12 notes). Additionally each piece is played
at one fixed tempo. Although there are sections where the
song may speed up and slow down it only does so in integer
multiples of the base tempo. To mitigate these properties of
classical music from the era of Bach we effectively create a
medley or a remix of different tracks by appending and mixing
different MIDI files, so as to provide variations in tempo and
scale in the training audio files.

Since we are entirely working with paired digital instru-
ments there is no question of a noisy dataset or multiple
sources. But there are a lot more subtleties and nuance to
a Data-set that can be ascribed to features like dynamics
of the parts, inherent non-linearities in the tone generation,
stochasticity in the note onset as compared to harmonic
stability after, and responses to monophonic vs. polyphonic
audio signals. These dynamics also vary between musical
genres and instruments. Within the scope of this project and
the fact that we were restricted to a shallow neural network
we decided to analyse results on Western classical music as it
is well studied by musicologist and has a rich vocabulary of
terms we could use to describe the models performance.

The final aspect of dataset generation are the instruments
and direction of mapping. We chose to generate audio cor-
responding to a Grand Piano, a Jazz Guitar and a Marimba
on both the monophonic and polyphonic MIDI data. All three
are popular acoustic instruments, with differing timbres. We
chose the mappings Piano to Guitar and Piano to Marimba as
explained below-

A. Properties of Selected Instruments

We analyse the timbre of the given instruments based
on a melody range spectrogram representation. Marimba are
percussive instruments with pipes for resonance. This leads
to a very linear behaviour and a distinct lack of overtones
making for a pure sinusoid like sound. The guitar as a contrast
is rich in overtones as most of the tone is determined by
string resonance, where a string consists of a core with an
external wrapping. This leads to many different harmonics
and overtones. The grand piano falls in-between these two
instruments. It is similar to a guitar in that its tone is derived
from vibrating strings, but it has less emphasis on higher
harmonics, which is why the timbre of an average guitar is

brighter than that of a standard grand piano. Additionally an
FFT analysis reveals that our Piano tone had no frequencies
above 4kHz, whereas the guitar’s range extended till 8kHz.
These inferences are evident in the spectrograms as seen in
Fig. 1 and 3.

(a) Marimba Melody Range Spectrogram

(b) Piano Melody Range Spectrogram

(c) Guitar Melody Range Spectrogram

Fig. 1. The first four seconds of Bach’s cello suite
X-axis represents time, Y-axis represents identified melody note, intensity
captured in colour. Window Size of 8192 samples

IV. ANALYSIS PIPELINE

Our goal was to stick to a low complexity model as far as
possible, so the steps in our training are -

1) Training a Low Complexity Model
a) Tune hyperparameters without changing model
b) Evaluate performance on monophonic and poly-

phonic samples
c) Interpret Results for each instrument

2) Increase complexity of model based on insights from 1.
a) Tune hyperparameters without changing model
b) Evaluate performance on monophonic and poly-

phonic samples
c) Interpret Results for each instrument

Our code source [15] had implemented this variant of
WaveNet in such a manner that it could be used in any
DAW with low compute demands by loading the model into
a VST plugin. This approach works great for simulating non-
linear distortion effects attributed to both solid state and tube
based amplifiers, and the Impulse Responses corresponding to
Guitar Cabinet Speaker. Thus our expectations were that even
with a low complexity model we should be able to capture
correct frequencies when mapping two instruments. Their



Fig. 2. WaveNet-style architecture(Image taken from [])

documentation also described poor performance on delay and
reverb sound effects which we hoped would not effect sound
quality of our acoustic instruments emulation.

A. Architecture Description

WaveNet is a 1-D fully convolutional neural network in
which convolutional layers with varying dilation are stacked
up together. Usual multiply and add operation of each layer is
followed by dynamically gated non-linear activation function
[1]. Each successive layer have increased dilation factor which
allows the receptive field to grow exponentially.

The activations from each convolution layer are fed into
another network with 1*1 convolutions and non-linear activa-
tion function, which then produces a continuous output. This
output is fed into the network to produce the output of next
time-step. This network is trained to reduce the ESR loss (error
to signal ratio) between target and output signals. We used
Adam Optimizer with constant learning rate.

We used 10 convolutional layers with with dilation pattern
1, 2, 4, . . . , 1024. This gives a receptive field of 2047 samples.
Number of channels in each convolutional layer is set 12,
which Wright et. al. [16] shows to be the optimal choice.

V. RESULTS

A. Low Complexity Model-

Optimal Learning rate was chosen. The model used Adam
Optimizer withfor the Marimba we observed 3e−3 to be
appropriate, but for mapping Piano to Guitar we observed
better results with a learning rate of 1e−5. We observed that
the model performed poorly in modelling the stochastic start
of a note, and had trouble when notes overlapped. Even though
the dataset was monophonic there were sections where notes
blended into each other due to non zero sustain and decay
duration. These regions add additional non-linearities that our
model struggles to emulate.

1) Piano-Marimba: Strengths of the transfer from Piano
to Marimba was an accurate representation of high frequency
content. Our model also contained a pre-emphasis filter that
was necessary to preserve high frequency content when em-
ulating distortion from a guitar, which doesn’t contradict our
results. The only other major artifact in this mapping was a
high frequency buzzing noise. This is due to the fact that our
WaveNet model could not remove all overtones present in the
Piano input audio.

Naturally this motivates the question whether a simple low
pass filter could compete with our WaveNet results as a well
designed frequency filter could remove such noise directly
from the piano audio with minimal artifacts. All attempts to
tune such a filter on the DAW revealed that although low-
pass filter on Piano was aesthetically pleasing, it retained more
stochasticity from the piano and the WaveNet model sounded
closer to a Marimba subjectively. This makes removal of the
buzzing noise essential for successful timbre transfer. This
makes timbre transfer it as a good use case for a more complex
model.

2) Piano-Guitar: Similar to the Piano Marimba transfer
we observed good quality frequency information retention,
i.e. the FFT of the predicted signal and input signal were
close in shape, but this transfer faced issues in producing high
frequency information that did not exist in the original piano
track. Where the guitar had frequencies ranging upto 8kHz, the
Piano only had frequencies closer to 3.5kHz. This model could
not construct information in the band between 3.5kHz to 8kHz
that didn’t exist in the piano audio. This emulation of guitar
sound was also struggling to generate stochastic onset noises,
and otherwise results were similar to what we observed for the
Marimba. Here the buzzing noise could even be interpreted as
distortion on a guitar so this reconstruction wasn’t entirely
without use.

B. Impact of Increasing Complexity - Dilation Depth

Dilation Depth both increases the perceptive field of the
model and the depth of the model in a layer, due to its tree
like structure. This translates to more history being available to
the model at each prediction. Very low dilation depth implies
poorer understanding of low frequency information. In the
low complexity model we work with a dilation depth of 10,
which implies a receptive field of 2047 samples at 44.1kHz.
This corresponds to 0.046 seconds, or starting from 40Hz
which is within human limits of 20-20kHz, and most acoustic
instruments and compositions are not capable of producing
significant sub 40Hz audio. We still increased dilation depth
to 20 hoping this would provide the model more information
about note onsets and note durations, as all relevant frequency
information was already available to the network. This means
means the perceptive field of one stack of dilated convolutions
is roughly 20 seconds.

1) Piano-Marimba: There was no observable difference as
the validation loss plateaued around 0.3 for the increase in
dilation depth. This highlights a limitation of the Neural Net
when dilation is varied keeping all other parameters fixed.
Larger Dilation does not help.

2) Piano-Guitar: We had more success on training a model
on the guitar, which is more complex both in its note onset
and overtones present. With less dilation layers we achieved
a minima on validation loss of 0.6, contrasted with 0.45
for increased dilation layers. The model trained faster (on
loss vs. time) than an equivalent model with lower dilation
depth, although each epoch took considerably longer. This was
further improved in the next section.



C. Impact of Increasing Complexity - Stacked Dilated Convo-
lutions

So far our model grew in complexity by increasing the
depth of the tree of dilations. This was extremely expensive
computationally, both for training and for running the model as
we ran out of RAM resources very quickly. Another approach
to increasing perceptive field is to have more repetitions of
such dilated convolution stacks. This reduces the depth of each
layer, allowing us to build deeper neural networks that are less
expensive computationally. Unlike the previous section where
we increased depth to 20 layers by increasing dilation depth,
we stick to the default dilation depth of 10 and stack 3 repeti-
tions, effectively leading to a depth of 30 layers, whose dilation
pattern is 1, 2, 4, . . . , 1024, 1, 2, 4, . . . , 1024, 1, 2, 4, . . . , 1024.

1) Piano-Marimba: After tuning hyper parameters we ob-
served better performance by this model than all previous
attempts in terms of validation error, reaching a loss of 0.20
compared to 0.30 with the shallow net. This improvement is
not due to removal of buzzing from the audio but because of
better reconstruction of stochastic note onsets. This leads to
more defined notes during sections of rapid note interchange,
also known as a trill in classical music terms. Previously the
we’d hear distortion due to overlapping note tails and that
effect is diminished.

2) Piano-Guitar: We observed faster tuning and lower
validation loss compared to both the low complexity model
and increased dilation depth model. This mapping still doesn’t
match the quality of Piano-Marimba transfer, as it achieved a
best loss at 0.35. But on the positive side the model is now
able to generate higher frequency audio signals that weren’t
available prior. Aside from the buzzing noise the model was
reasonable at generating note onsets which was only possible
due to increased model depth.

VI. DISCUSSION

The major strengths are -
1) Good spectral transfer (from existing frequencies in

input)
2) Learns non-trivial characteristics like volume, and the

ADSR curve well.
Major Drawbacks

1) Artifacts like buzzing noise
2) Poor Performance on polyphonic audio samples
3) Cannot generate frequencies missing in the input
4) Can’t transfer stochastic noises well in shallow nets

The buzzy noise is attributed to over-smoothing in features
[13], due to a lack of depth of model. Such buzzing artifacts
have also been reported in other research like [9] that report
this noise is due to random perturbations in phase even when
correct harmonic series are generated. Our model works well
for preserving non-stochastic audio content, but our model
finds note onsets difficult to map between instruments without
increasing depth.

A point worth remembering is that the network [6] was
initially optimised and validated for modelling distortion and

(a) Target Guitar Signal Spectrogram

(b) Best Performing Model Prediction Spectrogram

(c) Low Complexity Model Prediction Spectrogram

(d) Input Piano Spectrogram

Fig. 3. Validation Data Spectrograms. Note the lack of high frequency content
in part (c) and the abundance of high frequency audio in part (b). Our best
performing model (b) has stacked dilated convolutions. These results help us
motivate stacked convolutions being necessary for meaningful timbre transfer.

overdrive effects for guitars. It is extremely successful at doing
so leading to the its wide commercial application through
the Finnish company Neural DSP. Not only is the task of
modelling distortion a simpler non-linearity to model than
timbre transfer, which is why networks produced extremely
low losses in that domain, but also buzzing noises are inherent
to the required output sound. So we cannot comment on
limitations of this model to remove buzzing based on our
own experience. These buzzing artifacts are also absent in
other generative approaches that use images representations
of audio, but those models face other artifacts due to down-
sampling, quantisation and poor reconstruction capabilities of
certain spectrogram representations.

We were not able to train the model on polyphonic samples
sufficiently outside of initial tests on the shallow model. This
remains an open problem worth investigating.

The fact that the shallow Model could not reconstruct
frequencies that were missing in the input audio indicate that
such a model is good for mapping instruments with a very
bright timbre, which are instruments that contain a lot of
information in higher frequencies, to instruments with darker
timbres. As the shallow model was only successful at manip-
ulating frequencies that it has available to it this represents
a drawback of real time audio to audio mappings without
first compressing to features or transforming to the Image
domain. In the image domain even with shallow models we
can explicitly provide the model space to add high frequency
information by appropriate choice of spectrogram and window
sizes. Encoding for different frequencies is not such a simple
task when working with WaveNet, and it is more difficult to
interpret how the network learns without visual representations



(a) Piano-Marimba Mapping

(b) Piano-Guitar Mapping

Fig. 4. Inferences from wav files generated by our best performing models
(Stacked Dilate Convolutions). 0.01 second window at highest intensity
location is shown with a comparison between x test (input piano audio), y test
(output instrument audio) and y pred (predicted audio). Note the retention of
high frequency noise when absolute difference of input and output is compared
for Guitar Audio. Phase errors are extremely evident in Marimba Audio, that
are indicative of the buzzing noise.

of the impact of each layer that can be inferred in image
based timbre transfer methods. Adding more layers or stacks
of dilated convolution was sufficient to infer this detail, and
holds promise for real time applications though it requires
more compute. There is still a need to search less compute
intensive models. This is a moderately strong conclusion.

Stochastic noises are clearly difficult to learn with a shal-
low network, as improvements were seen increasing depth.
Differences in phase between input and output make for
difficult non-linearities to model. As a contrast the task of
modelling distortion is a lot more tangible in the relationship
between input and output. Here the stochastic onset of one
instrument may have nothing in common with the stochastic
onset generated by another instrument. This stochasticity may
vary between different notes played on the same instrument
and techniques used to generate audio (e.g. playing a guitar
with a plectrum vs. a finger). We believe the model should not
learn to exactly duplicate the stochasticity using Signal to error
ratio, but perhaps should learn to create a realistic sounding

onset. This is worth investigating in the form of a modified loss
function, perhaps using a more complex Discriminator Neural
Network that learns to identify realistic sounding stochastic
note onsets. This is relatively weaker inference as deeper
networks performed better, so we cannot conclude that it is
a flaw of the model.

For future work one could look at starting with an optimal
bright pitch instrument (need not be a timbre that currently
exists) to map to other instruments. Alternative methods that
can lead to a deep but less compute intensive method are also
worth investigating along with changes to the loss function,
as error to signal ratio behaves similar to MSE loss while we
might require a more domain specific learning.
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APPENDIX

The notebook used is derived from [15] and we used all
of the python files provided. To listen to Audio Samples you
can mail either Author for access to a drive folder containing
audio. The drive folder is linked here.

http://dx.doi.org/10.21437/Interspeech.2017-970
http://dx.doi.org/10.21437/Interspeech.2017-970
http://www.bachcentral.com/midiindexcomplete.html
http://www.bachcentral.com/midiindexcomplete.html
https://github.com/GuitarML/PedalNetRT
https://github.com/GuitarML/PedalNetRT
https://drive.google.com/drive/folders/1RczzVYj6oxACdp25HuDOlmgiANT2G5yZ?usp=sharing
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